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 Abstract:Error-correction codes are a common way to guard against data corruption. OLS codes 
frequently make use of linear block codes with single- and double-error correction. Orthogonal Latin 
square (OLS) codes are a type of one-step majority-logic-decodable (OS-MLD) error correcting codes. 
Decoding these codes is quick and simple because to the use of short codes. Soft faults in 
semiconductor memories, OLS codes are used to rectify multiple cell failures. Reconfigurable designs 
like field programmable gate arrays can benefit from OLS codes generated from Latin squares 
(FPGA). By adopting Latin Square codes, this work describes the parity regulation matrices and the 
strategy for lowering the decoding block by enlarging the original OLS code. This work describes the 
implementation of orthogonal Latin square codes by their parity control matrices and the method of 
lowering the decoding block by enlarging the real size of the OLS code. The generalization problem is 
addressed in this study by narrowing the scope of the suggested technique to only include codes 
with improved errorcorrection.  
 
I.INTRODUCTION 
As a result of manufacturing flaws, aging or 
radiation-induced soft mistakes, electronic 
circuits in the nanoscales are susceptible to 
failures. For example, a soft error in a memory 
might corrupt data and cause a device failure 
by changing the content of a word. 
Consequently, error correcting codes are 
frequently used to secure memory in apps 
that require reliable operation (ECCs). It is 
possible to detect and correct errors by 
adding a certain amount of parity bits to each 
word. When writing to memory, parity checks 
are performed, and the results are then read 
back from memory. To encode and decode, 
this necessitates additional logic equipment. 

More parity check bits per word means more 
errors can be corrected, but more 
complicated logic circuitry means more errors 
can be corrected. If the mistake rate is high, 
memory cells may be affected in an 
unpredictably random manner. Near-
threshold caches, for example, or Spin-
transferThe use of torque magneto-resistive 
RAMs (STT-MRAMs) is necessary for the 
multiple bit error correction they enable. 
Some commonly used codes, such as the BCH 
codes, have a link between the number of 
parity bits and the number of defects that can 
be repaired. The decoding difficulty of BCH 
codes can be significantly increased if a  
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Correction Codes and poses a limiting design 
constraint, even though decoding is possible. 
In addition to Euclidean Geometry, Difference 
Set codes, and codes for Orthogonal Latin 
Square, codes for memory protection have 
been investigated extensively during the 
previous millennium; codes besides Euclidean 
Geometry, Difference Set codes, and codes 
for Orthogonal Latin Square have been 
configured. Fast decoding is possible in all of 
these circumstances thanks to Another Step 
Majority Logic Decoding. With a handful of 

equation parity checks, OS-MLD decodes each 
bit. Compared to syndrome decoding, where 
each bit is compared to the applicable error 
patterns and many syndrome patterns must 
be taken into account when multiple bits 
need to be rectified, the entire system is 
much simpler. Most OS-MLD code difficulties 
stem from the fact that it is only supported by 
a small number of codes, each having a 
limited number of word sizes and error 
correcting features. 

\Two-bit error correction codes (i.e. Double 
Error Correction (DEC)) and word sizes more 
than 10 bits are the only viable design 
alternatives afforded by OLS codes. 
These codes use a lot of parity check bits, 
which means they take up a lot of memory 
space. 
As a result, discovering new code installs that 
encourage OS-MLD as successful and creative 
design solutions has a great deal of promise. 
Double Error Correction codes supporting OS-
MLD are described in this research using a 
novel technique. The new structure is based 
on the employment of parity control matrices 
with constant weight and just one or two 
points of intersection. OS-MLD, which is 
substantially more difficult to design than 
Orthogonal Latin, can now be improved.  
The decoding of Square codes, however, is a 
little better than that of non-OS-MLD codes, 
such as BCH codes.OLS codes, which are also 
used to safeguard memory, were 
implemented generations before the proposal 
to protect interconnect and cache. k = m two 
data bits and two tm parity bits make up the 
block dimensions of Orthogonal Latin Square 
codes. An integer m is substituted for t, 
denoting the number of errors that have been 
fixed. For memory, word dimensions are 
frequently a power of two, as is m. One of the 
main advantages of OLS code is that it is 
simple and affordable to decipher. Because of 
this, OS-MLD can be used to decode OLS 
codes. When it comes to DS codes and OLS 
codes, what is the situation? Orthogonal Latin 
Square codes appear to be based on the idea 
that: 1) every data bit is involved in perfectly 
2t parity control bits; 2) every other data bit is 

involved through at most those parity control 
bits. 
In the Double Error Correction Orthogonal 
Latin Squarecodes, the proposed and 
removed SEC-DED-DAEC codes (DEC-OLS 
codes). A parity check matrix is used as the 
starting point for the first step, which is to 
remove the m parity check bits corresponding 
to one of Mi. For each equation in the 
reduced matrix, each transmitting data bit will 
indicate a parity check that has been deleted. 
Furthermore, these m-bit groups are referred 
to as g1, g2, g3, and g4 in Fig. When M1 is 
eliminated, there is no change in the parity 
check bit. G2 and G3 and G4 refer to the 
groupings of bits 9-12 and 13-16 
correspondingly. Three parity checks are 
performed on the updated matrix, and each 
bit of data is included in each check. As a 
result, single-bit and double-bit errors can be 
fixed using a majority vote decoding 
algorithm.  
II. EXISTINGMETHOD 
The limitations of these codes are also used to 
assess and establish Two Bit Overlap (TBO) 
codes. The matrices used to create the codes 
are examined in the first section, which 
demonstrates how they can be utilized to 
generate DEC OS-MLD codes. Sub-section two 
introduces the procedure for putting together 
matrices, while sub-section three details the 
parameters of proposed codes. 
MatrixFeatures 
Building OS-MLD codes using the preceding 
section's Double Error Correction (DEC) 
approach necessitates the creation of column 
matrices such that: 
2. Each column has four rows. 
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Only one column in a pair of columns shares a 
position with another column.Orthogonal 
Latin Squares with double error correction is 
an example of this type of architecture. 
Because each column corresponds to a data 
bit and each row corresponds to a parity 
check bit, the entire matrix can be utilized for 
parity checks in which the columns 
correspond to the data bits, and each row 
corresponds to a parity check bit. 
Orthogonal Square-Majority Logic Decodable 
property is easy to understand because each 
input data is parity checked four times, while 
the other bits represent this at only one parity 
check. 
There is still a problem, because two parity 
checks on the initial bit will produce faults on 
the other bits, therefore an error cannot be 
made.  
This will be the code for DEC if at least five of 
the seven equations for the participating bit 
have a majority. There are a number of 
possible outcomes, including the following: 
First, there is no plurality and no incorrectly 
since the error free bit has a worst case of 
four parity check faults. A bit in error and 
another bit in error are to blame for at least 
five parity check faults on the incorrect bit, 
thus it will be fixed. 
In terms of decoding and encoding, this code 
is more complicated than a DEC OLS code. It's 
because of these two things: 
It takes more reasoning to measure parity 
tests since there are more matrices in the 
matrix (seven instead of four per column). 
The majority vote is carried out using seven 
parity tests and not more than four, which is 
yet more complicated. 
However as detailed in the evaluation section 
of this paper,the decoding is still significantly 
simpler than for a non OS-MLD language. The 
proposed codes need to have a 
lowernumberofparitycheckbitstohaveanadvan
tageovercurrent DEC OLS codes. As seen next, 
this will be the caseforthe suggestedscheme. 
PolynomialbasedMatrix Construction 
To create matrices with the attributes listed in 
this section, take these steps. Each bit with 
index b is associated with a polynomial P of 
degree two, so that b is associated with P. 

Code word data bits are encoded as [0,3k-1] 
for each of its three 
coefficients.Thecoefficients.  
Considerabuildinginwhichthematricesaregiven
insucha 
 areselectedsuchthat𝑃𝑏(x)=∑2 
𝑎𝑖.𝑥𝑖satisfies𝑃𝑏(3√𝑘)= 
waythat: 
𝑎𝑖.(3√𝑘)𝑖=𝑏.Notethatthereisasingleoptionfort
he 
 1.
 Thereareexactly7columnseach.2.With
onein 
particular,eachpairofcolumnshasjusttwopositi
onsatmost. 
selectionofa,a,a.Forinstance,aequalsbmod 
3√𝑘,𝑎1=((𝑏−𝑎0)/3√𝑘)mode3√𝑘and𝑎2=((𝑏−𝑎0− 
 𝑎1.3√𝑘)/(3√𝑘 
Then the coefficients of the
 polynomial are𝑎0= 
51𝑚𝑜𝑑7=2;𝑎=51−2𝑚𝑜𝑑7= 
70𝑎𝑛𝑑𝑎2(51−2−0.7)𝑚𝑜𝑑7=1so that
 𝑃(𝑥)=2+𝑥2 
polynomialwithdegree2,hasthreerootsthatare
notpossibleasperLagrangestheorem.eThismea
ns,therefore 
thatPbiscompletelyquavalenttoPc. 
consequently,B=c 
 whichsatisfies𝑃51(3√𝑘)=𝑃51(7)=2+72=51. 
We next use the seven polynomial values to 
describe each b bit so that modulo3k 
calculations can be performed. Such values 
will be bb = 51: bb = 2, 3, 6, 4, 4, 6, 3 There is 
a representation for each of these values3k. 
An arrangement of bits where each bit 
represents an integer, while the rest are 
zeros, resulting in a value of one. As with the 
ordered sequence of values, a binary vector 
length describes it. 
and the two bits are same which eliminates 
the hypothesisthatthese bitswere different. 
Thebuildingjustmentionedwouldthereforepro
ducematrices with columns which have 
exactly seven columnsand that share two at 
most. Let us summarize the 
mechanismofconstruction: 
1. Choose a block size k such that 3√𝑘is a 
prime more thansix.2. For every position 
ofkbits allocate an index b = 0, 1,2…k-
1.3.Computethepolynomial𝑃𝑏(𝑥)= 
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3√𝑘.
 ∑2.𝑥𝑖whichsatisfies𝑃(3√𝑘)=bwithcoeff
icientsthat 
𝑖=0 𝑏 
 That list would be {0010000, 
belongto 

*0,3√𝑘−1].4.Computethe 
valuesofthepolynomial3√𝑘for 
 
0001000,0000001,0000100,0000100,0000001
,0001000}in 
3√𝑘bitarraytoeachofthevalues 
 
ourexample.Intheparitysearchmatrix,thisvecto
rwillbe 

the column of the data bit b and has exactly 
seven (satisfyingthefirstcondition). 3k37k. 
There are two additional conditions met when 
a prime number is higher than or equal to 
seven, as mentioned in the previous 
subsection. At most, two columns are allowed 
in each matrix column, according to this rule. 
On the basis of Lagranges' theorem, which 
stipulates that a polynomial of degree n>1 
modulo, a prime number P with integer 
coefficients that are not divisible by P, may 
only have one root at most. 
There are no coefficients modulo that are 
divisible by and over which they are also 
smaller than for the polynomials employed in 
the code building. Assume, for the sake of 
argument, that the parity check matrix's bits b 
and c each contain three bits or more. These 
two polynomials, Pb(x) and Pc(x), show at 
least three distinct values overlapping, each 
with a degree of 2. Thereby suggesting that 
the product of lead and tin is a obtained in 4 
such that the bit thatcorresponds to the 
valueis 1 and all the other bits are 0. 6. The 
column of the paritycheck matrix for that bit 
is formed by the concatenation 
ofthesevenarraysobtainedin step5. 
For such a specified prime number p, the 
codes acquired getthe following parameters: 
and n-k=7. P. Which comparescorrelates to 
codes which have OLS & when p is big, n-
k=4.p.TBOCodes 
ThespecificationsoftheTBOcodesacquiredwith
thepolynomialconfigurationwassummarized.T
hespecificationsoftheDECOLScodeswithsimilar
wordlengths are also seen in this table; just a 
few word sizesbeginning at k = 343 are 
supported. This could be used 
byshorteningitsHmatrixforthesecurityof256bit
words.Single parity bit can be preserved after 
extracting 87columnsthatoccupy 
most1positions fromH matrixof each 

So the proposed code requires 48 parity check 
bits similar to 64 for a DEC OLS code. Security 
may be ensured for 1024-bit words with the 
following block size, k = 1331 (as applicable to 
some con-figurations for cache memory). In 
this scenario, the suggested code could be 
simplified and permits 75 parity bits in 
comparison to 128 for DEC OLS code by 
maintaining 2 parity bits. 
III. PROPOSEDMETHOD 
 
In communication, data is often received 
sequentially and decoded bit-by-bit. Decoding 
is made tough by the requirement to decode 
a complete word in one go. SEC (Single Error 
Correction) codes are commonly employed to 
preserve memories. Decoding is possible for 
each bit in such a circumstance by comparing 
the syndrome to the corresponding column in 
the parity check matrix. 
However, if more than one bit needs to be 
fixed, such as 
1. The size of each column. 7. k 2. Every 
column referring 
toabitofdatahasexactlysevencolumns.3.Everys
etofcolumns only has two positions as a 
maximum, with one indefault(twobitoverlap). 
ConstructionoftheParity CheckMatrix: 
There are orthogonal Latin Square codes that 
are taken from Latin squares. If the set 0, 1, 
2...m-1 is used, then each row and column in 
the Latin square will only contain one instance 
of each element, which is known as an array 
of Latin squares with size m*m. It is not 
possible to derive an OLS code from the Latin 
squares of dimension m for secure data with 
k-bits of length from the OLS code. The OLS 
code adjustment t-error has 2 parity bits. 
an approach called as syndrome decoding, 
wants to evaluatethe various bit error 
syndromes that contain the bit. 
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Whichleadstoasignificantincreaseinthecomple
xitiesof 
decoding,particularlyforlargewordsizes.OneSt
epMajorityLogicDecodable(OS-
MLD)codeshavebeendevelopedtosecuremem
oriesinordertoaddressthelimitationsofsyndro
me-baseddecoding.Formemorysecurity, some 
OS-MLD codes, such as the Orthogonal 
LatinSquare codes, was suggested decades 
ago. In certain 
cases,however,theyrequirealargenumberofbit
sforparitytesting. The number of parity check 
bits is minimized bythese codes. The 
maindifficult with EG as well as DS codesis 
that merely a few block sizes as well as error 
correctionfunctionalityaresupported.Forinsta
nce,EGcodesonlysupport(n,k)forDoubleErrorC
orrection(DEC),thatcorresponds to a code 
word size n as well as the data blocksizek. 
Double error correction Orthogonal Latin 
Square codes 
aredesignedtohavefollowingcharacteristicsfor

theparitycheck matricesH: M1 and M2 are 
both identity matrices of size m x m, and the 
number of 1s in each row is equal to m. There 
are a number of sub-matrices produced from 
pairwise orthogonal Latin squares, i.e. M3, 
M4,... M2t. 
A basic decoding scheme can be devised 
based on these characteristics. The seven 
parity check equations involved in this system 
are used to perform a majority vote on each 
piece of data. If the answer is one, the bit has 
been found to be incorrect and will be fixed. 
Decoding this way is known as one-step 
majority logic.Data bits will be corrected even 
if there are single and double mistakes. The 
other two bits can only effect two of its parity 
tests if the bit itself is correct, therefore there 
is no majority to begin a correction if the bit is 
accurate. 
Data bits are represented by the left n2 * n2 
columns in the parity check matrix H for 
Double Error Correction Orthogonal Latin 

 

 
Figure 1: Parity check matrix H of the (n, 1, k) DEC OLScode. 
Square coding, which can be seen in Figure 1. 
In order to verify all potential two-bit error 
patterns for a bit, the required logic circuit is 
easier than testing all of them. Because the 
number of possible double bit error patterns 
is directly proportional to n, this feature is 
more useful when the code word size is 
big.Each row of an OLS code contains 
equations for the code word calculation, and 
these equations can be directly sent into XOR 
gates such that the parity bits can be created 
by XORing each row's bits. Hence, in the 
Orthogonal Latin Square codes parity check 
matrix, there are equal numbers of parity bits 
and rows. In the decoder of an OLS code with 
a size of 1*n2 depicted in the picture, one-
step majority logic decoding takes place.n has 
to be a prime number, which we figured out 

as 7 in this design. Each decoding bit is 1*49 
of an identity matrix that is 49x49. Parity 
check equations are recomputed with the bit 
to produce each code word bit, and then a 
majority vote is conducted among the parity 
check equations. It is only if an error has 
occurred that the value of the resultant parity 
check equation or the syndrome bit changes 
from 0 to 1. 
If the majority of the syndrome bits turn into 
1, then it isevident that an error has altered 
the state of the bit, and so,the bit necessities 
to be corrected. The re-computing of 
theparity check bits is done by modulo-2 
adders or XOR gateshaving suitable number of 
inputs. By using a 2-input XORgate the error 
can be corrected at the end of 
themajoritylogic circuit, where one of the 
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inputs is the bit itself and theother oneistheoutputofthemajoritylogiccircuit. 
RESULTS ANDDISCUSSION 
Orthogonal Latin square codes are quite effective when it comes to correcting errors involving many 
bits. Encoding and decoding of the OLS codes for huge data blocks is now possible thanks to this 
research. Compared to the current method, the area and the latency will be reduced in the 
proposed method. 
 
RTLSchematic 
 

Simulationresults: 
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CONCLUSION 
As compared to other existing multi-bit error 
correcting codes, orthogonal Latin square 
codes are highly efficient in correcting multi-
bit errors without sacrificing substantial area, 
and the encoders and decoders can be 
implemented in comparatively simple circuits. 
Encoding and decoding of the OLS codes is 
possible for larger data blocks and a wide 
range of lengths thanks to their great 
modularity and flexibility. Implementation on 
an FPGA platform has shown that the encoder 
and decoder are both simple and fast. 
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